Effect of exogenous ghrelin on cell differentiation antigen 40 expression in endothelial cells.
نویسندگان
چکیده
Ghrelin is a brain-gut peptide that serves as a natural ligand for growth hormone secretagogue receptor (GHSR). It also exists abundantly in the cardiovascular system. In order to evaluate the possible role of ghrelin in the development of atherosclerosis, the effect of ghrelin on the expression of cell differentiation antigen 40 (CD40) were studied. Human umbilical vein endothelial cell (HUVEC) line-ECV 304 was pre-treated with different concentrations of ghrelin, des-acyl ghrelin or [d-Lys]-GHRP-6 (a ghrelin receptor antagonist), and then induced with tumor necrosis factor-alpha (TNF-alpha) and interferon gamma (IFN-gamma). The mRNA levels of CD40 were analyzed by reverse transcription-polymerase chain reaction, and the expressions of CD40 protein in the cells were measured by flow cytometry (FCM) and Western blotting. The results showed that exogenous ghrelin could significantly inhibit TNF-alpha/IFN-gamma induced CD40 expression in HUVEC cells in a concentration-dependent manner. When treated with 1000 ng/ml of ghrelin, the mRNA level of CD40 in the cells was decreased by approximately 77%, but when treated with both 1000 ng/ml of ghrelin and 1000 ng/ml of [d-Lys]-GHRP-6, the mRNA level of CD40 in the cells was decreased by only 42%, suggesting that [d-Lys]-GHRP-6 could counteract the inhibitory effect of ghrelin in these cells. However, CD40 expression was not inhibited by des-acyl ghrelin at 1000 ng/ml. The results in protein expression analysis detected by FCM and Western blotting further confirmed these results. Our results suggested that in the cardiovascular system, ghrelin not only has an anti-inflammatory effect, but also has a significant immunoregulatory effect that may be mediated through the GHSR-1a receptor.
منابع مشابه
Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A
Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...
متن کاملEffect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions
Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...
متن کاملThe effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line
Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...
متن کاملInvestigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability
Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 39 12 شماره
صفحات -
تاریخ انتشار 2007